Control of nuclear centration in the C. elegans zygote by receptor-independent Gα signaling and myosin II
نویسندگان
چکیده
Mitotic spindle positioning in the Caenorhabditis elegans zygote involves microtubule-dependent pulling forces applied to centrosomes. In this study, we investigate the role of actomyosin in centration, the movement of the nucleus-centrosome complex (NCC) to the cell center. We find that the rate of wild-type centration depends equally on the nonmuscle myosin II NMY-2 and the Galpha proteins GOA-1/GPA-16. In centration- defective let-99(-) mutant zygotes, GOA-1/GPA-16 and NMY-2 act abnormally to oppose centration. This suggests that LET-99 determines the direction of a force on the NCC that is promoted by Galpha signaling and actomyosin. During wild-type centration, NMY-2-GFP aggregates anterior to the NCC tend to move further anterior, suggesting that actomyosin contraction could pull the NCC. In GOA-1/GPA-16-depleted zygotes, NMY-2 aggregate displacement is reduced and largely randomized, whereas in a let-99(-) mutant, NMY-2 aggregates tend to make large posterior displacements. These results suggest that Galpha signaling and LET-99 control centration by regulating polarized actomyosin contraction.
منابع مشابه
A Gαq-Ca2+ Signaling Pathway Promotes Actin-Mediated Epidermal Wound Closure in C. elegans
BACKGROUND Repair of skin wounds is essential for animals to survive in a harsh environment, yet the signaling pathways initiating wound repair in vivo remain little understood. In Caenorhabditis elegans, a p38 mitogen-activated protein kinase (MAPK) cascade promotes innate immune responses to wounding but is not required for other aspects of wound healing. We therefore set out to identify addi...
متن کاملAsymmetric Division: AGS Proteins Position the Spindle
There was a time, not long ago, when finding a role for heterotrimeric G proteins in a biological process was taken as a sign that cells were signaling to other cells. The functions of heterotrimeric G proteins depended on cell–cell signaling: cells sent signals that could activate serpentine receptors on the surfaces of other cells, and the job of heterotrimeric G proteins was to relay these s...
متن کاملDynactin binding to tyrosinated microtubules promotes centrosome centration in C. elegans by enhancing dynein-mediated organelle transport
The microtubule-based motor dynein generates pulling forces for centrosome centration and mitotic spindle positioning in animal cells. How the essential dynein activator dynactin regulates these functions of the motor is incompletely understood. Here, we dissect the role of dynactin's microtubule binding activity, located in the p150 CAP-Gly domain and an adjacent basic patch, in the C. elegans...
متن کاملNon-junctional E-Cadherin Clusters Regulate the Actomyosin Cortex in the C. elegans Zygote
Classical cadherins are well known for their essential function in mediating cell-cell adhesion via their extra-cellular cadherin domains and intra-cellular connections to the actin cytoskeleton [1-3]. There is evidence, however, of adhesion-independent cadherin clusters existing outside of cell-cell junctions [4-6]. What function, if any, these clusters have is not known. HMR-1, the sole class...
متن کاملA Direct Interaction between IP3 Receptors and Myosin II Regulates IP3 Signaling in C. elegans
Molecular and physiological studies of cells implicate interactions between the cytoskeleton and the intracellular calcium signalling machinery as an important mechanism for the regulation of calcium signalling. However, little is known about the functions of such mechanisms in animals. A key component of the calcium signalling network is the intracellular release of calcium in response to the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 178 شماره
صفحات -
تاریخ انتشار 2007